Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 511
Filtrar
1.
ArXiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38560741

RESUMO

In the wake of epidemics, quarantine measures are typically recommended by health authorities or governments to help control the spread of the disease. Compared with mandatory quarantine, voluntary quarantine offers individuals the liberty to decide whether to isolate themselves in case of infection exposure, driven by their personal assessment of the trade-off between economic loss and health risks as well as their own sense of social responsibility and concern for public health. To better understand self-motivated health behavior choices under these factors, here we incorporate voluntary quarantine into an endemic disease model -- the susceptible-infected-susceptible (SIS) model -- and perform comprehensive agent-based simulations to characterize the resulting behavior-disease interactions in structured populations. We quantify the conditions under which voluntary quarantine will be an effective intervention measure to mitigate disease burden. Furthermore, we demonstrate how individual decision-making factors, including the level of temptation to refrain from quarantine and the degree of social compassion, impact compliance levels of voluntary quarantines and the consequent collective disease mitigation efforts. We find that successful disease control requires either a sufficiently low level of temptation or a sufficiently high degree of social compassion, such that even complete containment of the epidemic is attainable. In addition to well-mixed populations, our simulation results are applicable to other more realistic social networks of contacts, including spatial lattices, small-world networks, and real social networks. Our work offers new insights into the fundamental social dilemma aspect of disease control through non-pharmaceutical interventions, such as voluntary quarantine and isolation, where the collective outcome of individual decision-making is crucial.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38606720

RESUMO

Surface engineering is one of the important strategies to enhance the power conversion efficiency (PCE) and stability of perovskite solar cells (PSCs). Herein, 2-chloro-1,3-dimethylimidazolidinium hexafluorophosphate (CIP) was introduced into PSCs to passivate the defects of the perovskite films. There are many F atoms in CIP molecules that have strong electronegativity and hydrophobicity. F groups can interact with Pb2+ defects, inhibit interface recombination, improve the interaction between the CIP ionic liquid and perovskite film, and reduce the defect density of perovskites, thus improving the stability of perovskite devices. Density functional theory calculation reveals that CIP can interact with uncoordinated Pb2+ in perovskites through coordination, reduce the defects of perovskite films, and inhibit nonradiation recombination. The ITO/SnO2/MAPbI3/CIP/carbon devices without hole transport layers possessed the highest PCE of 17.06%. Moreover, the unencapsulated device remains at 98.18% of the initial efficiency stored in 30-40% relative humidity for 850 h. This strategy provides an effective reference for enhancing the performance of PSCs.

3.
IEEE Trans Med Imaging ; PP2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536679

RESUMO

Multi-frequency electrical impedance tomography (mfEIT) offers a nondestructive imaging technology that reconstructs the distribution of electrical characteristics within a subject based on the impedance spectral differences among biological tissues. However, the technology faces challenges in imaging multi-class lesion targets when the conductivity of background tissues is frequency-dependent. To address these issues, we propose a spatial-frequency cross-fusion network (SFCF-Net) imaging algorithm, built on a multi-path fusion structure. This algorithm uses multi-path structures and hyper-dense connections to capture both spatial and frequency correlations between multi-frequency conductivity images, which achieves differential imaging for lesion targets of multiple categories through cross-fusion of information. According to both simulation and physical experiment results, the proposed SFCF-Net algorithm shows an excellent performance in terms of lesion imaging and category discrimination compared to the weighted frequency-difference, U-Net, and MMV-Net algorithms. The proposed algorithm enhances the ability of mfEIT to simultaneously obtain both structural and spectral information from the tissue being examined and improves the accuracy and reliability of mfEIT, opening new avenues for its application in clinical diagnostics and treatment monitoring.

4.
PNAS Nexus ; 3(3): pgae090, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38463039

RESUMO

The spread of fake news on social media is a pressing issue. Here, we develop a mathematical model on social networks in which news sharing is modeled as a coordination game. We use this model to study the effect of adding designated individuals who sanction fake news sharers (representing, for example, correction of false claims or public shaming of those who share such claims). By simulating our model on synthetic square lattices and small-world networks, we demonstrate that social network structure allows fake news spreaders to form echo chambers and more than doubles fake news' resistance to distributed sanctioning efforts. We confirm our results are robust to a wide range of coordination and sanctioning payoff parameters as well as initial conditions. Using a Twitter network dataset, we show that sanctioners can help contain fake news when placed strategically. Furthermore, we analytically determine the conditions required for peer sanctioning to be effective, including prevalence and enforcement levels. Our findings have implications for developing mitigation strategies to control misinformation and preserve the integrity of public discourse.

5.
Front Oncol ; 14: 1351359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38454928

RESUMO

Background: In recent years, we have observed the pivotal role of immunotherapy in improving survival for patients with non-small cell lung cancer (NSCLC). However, the effectiveness of immunotherapy in the perioperative (neoadjuvant + adjuvant) treatment of resectable NSCLC remains uncertain. We conducted a comprehensive analysis of its antitumor efficacy and adverse effects (AEs) by pooling data from the KEYNOTE-671, NADIM II, and AEGEAN clinical trials. Methods: For eligible studies, we searched seven databases. The randomized controlled trials (RCTs) pertaining to the comparative analysis of combination neoadjuvant platinum-based chemotherapy plus perioperative immunotherapy (PIO) versus perioperative placebo (PP) were included. Primary endpoints were overall survival (OS) and event-free survival (EFS). Secondary endpoints encompassed drug responses, AEs, and surgical outcomes. Results: Three RCTs (KEYNOTE-671, NADIM II, and AEGEAN) were included in the final analysis. PIO group (neoadjuvant platinum-based chemotherapy plus perioperative immunotherapy) exhibited superior efficacy in OS (hazard ratio [HR]: 0.63 [0.49-0.81]), EFS (HR: 0.61 [0.52, 0.72]), objective response rate (risk ratio [RR]: 2.21 [1.91, 2.54]), pathological complete response (RR: 4.36 [3.04, 6.25]), major pathological response (RR: 2.79 [2.25, 3.46]), R0 resection rate (RR: 1.13 [1.00, 1.26]) and rate of adjuvant treatment (RR: 1.08 [1.01, 1.15]) compared with PP group (neoadjuvant platinum-based chemotherapy plus perioperative placebo). In the subgroup analysis, EFS tended to favor the PIO group in almost all subgroups. BMI (>25), T stage (IV), N stage (N1-N2) and pathological response (with pathological complete response) were favorable factors in the PIO group. In the safety assessment, the PIO group exhibited higher rates of serious AEs (28.96% vs. 23.51%) and AEs leading to treatment discontinuation (12.84% vs. 5.81%). Meanwhile, although total adverse events, grade 3-5 adverse events, and fatal adverse events tended to favor the PP group, the differences were not statistically significant. Conclusion: PIO appears to be superior to PP for resectable stage II-III NSCLC, demonstrating enhanced survival and pathological responses. However, its elevated adverse event (AE) rate warrants careful consideration. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier CRD42023487475.

6.
Foods ; 13(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38540887

RESUMO

Deoxynivalenol (DON) is a harmful fungal toxin, and its contamination in wheat flour poses a food safety concern globally. This study proposes the combination of fluorescence hyperspectral imaging (FHSI) and qualitative discrimination methods for the detection of excessive DON content in wheat flour. Wheat flour samples were prepared with varying DON concentrations through the addition of trace amounts of DON using the wet mixing method for fluorescence hyperspectral image collection. SG smoothing and normalization algorithms were applied for original spectra preprocessing. Feature band selection was carried out by applying the successive projection algorithm (SPA), uninformative variable elimination (UVE), competitive adaptive reweighted sampling (CARS), and the random frog algorithm on the fluorescence spectrum. Random forest (RF) and support vector machine (SVM) classification models were utilized to identify wheat flour samples with DON concentrations higher than 1 mg/kg. The results indicate that the SG-CARS-RF and SG-CARS-SVM models showed better performance than other models, achieving the highest recall rate of 98.95% and the highest accuracy of 97.78%, respectively. Additionally, the ROC curves demonstrated higher robustness on the RF algorithm. Deep learning algorithms were also applied to identify the samples that exceeded safety standards, and the convolutional neural network (CNN) model achieved a recognition accuracy rate of 97.78% for the test set. In conclusion, this study demonstrates the feasibility and potential of the FHSI technique in detecting DON infection in wheat flour.

7.
J Colloid Interface Sci ; 664: 33-44, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458053

RESUMO

Photocatalytic nitrogen fixation presents an eco-friendly approach to converting atmospheric nitrogen into ammonia (NH3), but the process faces challenges due to rapid interface charge recombination. Here, we report an innovative charge transfer and oriented accumulation strategy using an In-O-Mo bond-modulated S-scheme heterostructure composed of In2O3/Bi2MoO6 (In/BMO) synthesized using a simple electrostatic assembly. The unique interfacial arrangement with optimal photocatalyst configuration (3 % In/BMO) enabled enhanced photogenerated electron separation and transfer, leading to a remarkable nitrogen fixation rate of approximately 150.9 µmol·gcat-1·h-1 under visible light irradiation. The performance of the photocatalyst was 9-fold and 27-fold higher than that of its pristine components, Bi2MoO6 and In2O3, respectively. The experimental and theoretical evaluation deemed interfacial In-O-Mo bonds crucial for rapid transfer and charge-oriented accumulation. Whereas the generated internal electric field drove the spatial separation and transfer of photo-generated electrons and holes, significantly enhancing the photocatalytic N2-to-NH3 conversion efficiency. The proposed work lays the foundation for designing S-scheme heterostructures with highly efficient interfacial bonds, offering a promising avenue for substantial improvements in photocatalytic nitrogen fixation.

8.
Sheng Li Xue Bao ; 76(1): 128-136, 2024 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-38444138

RESUMO

Cardiovascular complications are the leading cause of death in diabetic patients. Among them, diabetic cardiomyopathy (DCM) is a type of specific cardiomyopathy excluding myocardial damage caused by hypertension and coronary heart disease. It is characterized by abnormal metabolism of cardiomyocytes and gradual decline of cardiac function. The clinical manifestations of DCM are impaired diastolic function in early stage and impaired systolic function in late stage. Eventually it developed into heart failure. Mitochondria are the main organelles that provide energy in cardiomyocytes. Mitochondrial dynamics refers to the dynamic process of mitochondrial fusion and fission, which is an important approach for mitochondrial quality control. Mitochondrial dynamics plays a crucial role in maintaining mitochondrial homeostasis and cardiac function. The proteins that regulate mitochondrial fission are mainly Drp1 and its receptors, Fis1, MFF, MiD49 and MiD51. The protein that performs mitochondrial outer membrane fusion is Mfn1/2, and the inner membrane fusion protein is Opa1. This paper reviews recent progress on mitochondrial dynamics in DCM. The main contents are as follows: mitochondrial dynamics imbalance in both type 1 and 2 DCM is manifested as increased fission and inhibited fusion. The molecular mechanism of the former is mainly associated with up-regulated Drp1 and down-regulated Opa1, while the molecular mechanism of the latter is mainly associated with up-regulated Drp1 and down-regulated Mfn1/2. Increased mitochondrial fission and inhibited fusion can lead to mitochondrial dysfunction and promote the development of DCM. The active ingredients of the traditional Chinese medicine such as punicalagin, paeonol and endogenous substance melatonin can improve mitochondrial function and alleviate the symptoms of DCM by inhibiting mitochondrial fission or promoting mitochondrial fusion. This article is helpful to further understand the role and mechanism of mitochondrial dynamics in DCM, and provide new treatment methods and intervention strategies for clinical DCM patients based on mitochondrial dynamics.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Insuficiência Cardíaca , Humanos , Dinâmica Mitocondrial , Miocárdio , Homeostase , Proteínas de Membrana
9.
Adv Sci (Weinh) ; 11(14): e2307749, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311582

RESUMO

The heart primarily derives its energy through lipid oxidation. In cardiomyocytes, lipids are stored in lipid droplets (LDs) and are utilized in mitochondria, although the structural and functional connections between these two organelles remain largely unknown. In this study, visible evidence have presented indicating that a complex is formed at the mitochondria-LD membrane contact (MLC) site, involving mitochondrion-localized Mfn2 and LD-localized Hsc70. This complex serves to tether mitochondria to LDs, facilitating the transfer of fatty acids (FAs) from LDs to mitochondria for ß-oxidation. Reduction of Mfn2 induced by lipid overload inhibits MLC, hinders FA transfer, and results in lipid accumulation. Restoring Mfn2 reinstates MLC, alleviating myocardial lipotoxicity under lipid overload conditions both in-vivo and in-vitro. Additionally, prolonged lipid overload induces Mfn2 degradation through the ubiquitin-proteasome pathway, following Mfn2 acetylation at the K243 site. This leads to the transition from adaptive lipid utilization to maladaptive lipotoxicity. The experimental findings are supported by clinical data from patients with obesity and age-matched non-obese individuals. These translational results make a significant contribution to the molecular understanding of MLC in the heart, and offer new insights into its role in myocardial lipotoxicity.


Assuntos
GTP Fosfo-Hidrolases , Proteínas de Choque Térmico HSC70 , Gotículas Lipídicas , Metabolismo dos Lipídeos , Miócitos Cardíacos , Humanos , Ácidos Graxos/metabolismo , Hidrolases/metabolismo , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Animais , Camundongos , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Coração , Miócitos Cardíacos/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-38311344

RESUMO

BACKGROUND: The high mortality rate of patients with acute myocardial infarction (AMI) remains the most pressing issue of modern cardiology. Over the past 10 years, there has been no significant reduction in mortality among patients with AMI. It is quite obvious that there is an urgent need to develop fundamentally new drugs for the treatment of AMI. Angiotensin 1-7 has some promise in this regard. OBJECTIVE: The objective of this article is analysis of published data on the cardioprotective properties of angiotensin 1-7. METHODS: PubMed, Scopus, Science Direct, and Google Scholar were used to search articles for this study. RESULTS: Angiotensin 1-7 increases cardiac tolerance to ischemia/reperfusion and mitigates adverse remodeling of the heart. Angiotensin 1-7 can prevent not only ischemic but also reperfusion cardiac injury. The activation of the Mas receptor plays a key role in these effects of angiotensin 1-7. Angiotensin 1-7 alleviates Ca2+ overload of cardiomyocytes and reactive oxygen species production in ischemia/reperfusion (I/R) of the myocardium. It is possible that both effects are involved in angiotensin 1-7-triggered cardiac tolerance to I/R. Furthermore, angiotensin 1-7 inhibits apoptosis of cardiomyocytes and stimulates autophagy of cells. There is also indirect evidence suggesting that angiotensin 1-7 inhibits ferroptosis in cardiomyocytes. Moreover, angiotensin 1-7 possesses anti-inflammatory properties, possibly achieved through NF-kB activity inhibition. Phosphoinositide 3-kinase, Akt, and NO synthase are involved in the infarct-reducing effect of angiotensin 1-7. However, the specific end-effector of the cardioprotective impact of angiotensin 1-7 remains unknown. CONCLUSION: The molecular nature of the end-effector of the infarct-limiting effect of angiotensin 1-7 has not been elucidated. Perhaps, this end-effector is the sarcolemmal KATP channel or the mitochondrial KATP channel.

11.
Cell Mol Biol Lett ; 29(1): 22, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308199

RESUMO

INTRODUCTION: There is a high morbidity and mortality rate in mechanical trauma (MT)-induced hepatic injury. Currently, the molecular mechanisms underlying liver MT are largely unclear. Exploring the underlying mechanisms and developing safe and effective medicines to alleviate MT-induced hepatic injury is an urgent requirement. The aim of this study was to reveal the role of mitochondria-associated ER membranes (MAMs) in post-traumatic liver injury, and ascertain whether melatonin protects against MT-induced hepatic injury by regulating MAMs. METHODS: Hepatic mechanical injury was established in Sprague-Dawley rats and primary hepatocytes. A variety of experimental methods were employed to assess the effects of melatonin on hepatic injury, apoptosis, MAMs formation, mitochondrial function and signaling pathways. RESULTS: Significant increase of IP3R1 expression and MAMs formation were observed in MT-induced hepatic injury. Melatonin treatment at the dose of 30 mg/kg inhibited IP3R1-mediated MAMs and attenuated MT-induced liver injury in vivo. In vitro, primary hepatocytes cultured in 20% trauma serum (TS) for 12 h showed upregulated IP3R1 expression, increased MAMs formation and cell injury, which were suppressed by melatonin (100 µmol/L) treatment. Consequently, melatonin suppressed mitochondrial calcium overload, increased mitochondrial membrane potential and improved mitochondrial function under traumatic condition. Melatonin's inhibitory effects on MAMs formation and mitochondrial calcium overload were blunted when IP3R1 was overexpressed. Mechanistically, melatonin bound to its receptor (MR) and increased the expression of phosphorylated ERK1/2, which interacted with FoxO1 and inhibited the activation of FoxO1 that bound to the IP3R1 promoter to inhibit MAMs formation. CONCLUSION: Melatonin prevents the formation of MAMs via the MR-ERK1/2-FoxO1-IP3R1 pathway, thereby alleviating the development of MT-induced liver injury. Melatonin-modulated MAMs may be a promising therapeutic therapy for traumatic hepatic injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Melatonina , Animais , Ratos , Cálcio/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Melatonina/farmacologia , Melatonina/uso terapêutico , Ratos Sprague-Dawley
12.
Artigo em Inglês | MEDLINE | ID: mdl-38423796

RESUMO

BACKGROUND: Catecholamines and ß-adrenergic receptors (ß-ARs) play an important role in the regulation of cardiac tolerance to the impact of ischemia and reperfusion. This systematic review analyzed the molecular mechanisms of the cardioprotective activity of ß-AR ligands. METHODS: We performed an electronic search of topical articles using PubMed databases from 1966 to 2023. We cited original in vitro and in vivo studies and review articles that documented the cardioprotective properties of ß-AR agonists and antagonists. RESULTS: The infarct-reducing effect of ß-AR antagonists did not depend on a decrease in the heart rate. The target for ß-blockers is not only cardiomyocytes but also neutrophils. ß1-blockers (metoprolol, propranolol, timolol) and the selective ß2-AR agonist arformoterol have an infarct-reducing effect in coronary artery occlusion (CAO) in animals. Antagonists of ß1- and ß2-АR (metoprolol, propranolol, nadolol, carvedilol, bisoprolol, esmolol) are able to prevent reperfusion cardiac injury. All ß-AR ligands that reduced infarct size are the selective or nonselective ß1-blockers. It was hypothesized that ß1-AR blocking promotes an increase in cardiac tolerance to I/R. The activation of ß1-AR, ß2-AR, and ß3-AR can increase cardiac tolerance to I/R. The cardioprotective effect of ß-AR agonists is mediated via the activation of kinases and reactive oxygen species production. CONCLUSIONS: It is unclear why ß-blockers with the similar receptor selectivity have the infarct-sparing effect while other ß-blockers with the same selectivity do not affect infarct size. What is the molecular mechanism of the infarct-reducing effect of ß-blockers in reperfusion? Why did in early studies ß-blockers decrease the mortality rate in patients with acute myocardial infarction (AMI) and without reperfusion and in more recent studies ß-blockers had no effect on the mortality rate in patients with AMI and reperfusion? The creation of more effective ß-AR ligands depends on the answers to these questions.

13.
Nurse Educ Pract ; 75: 103915, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38340481

RESUMO

AIM: The aims of this study were: (1) to validate whether the Knowledge and Practices of Nurses on Deep Vein Thrombosis Risks and Prophylaxis Knowledge (KPNDVT-K) subscale could effectively measure the level of DVT knowledge of nursing interns; (2) to determine the level of DVT knowledge of nursing interns; and (3) to analyse the factors affecting the level of DVT knowledge of nursing interns. BACKGROUND: The effective prevention of deep vein thrombosis (DVT) in patients requires nursing staff to have a solid knowledge base of DVT. The level of knowledge about DVT among nursing interns ultimately affects their ability to play an important role in DVT prevention as a qualified nurse. To improve DVT prevention, the current level of knowledge needs to be explored. DESIGN: This was a cross-sectional survey. METHODS: Basic information was collected from the nursing interns. The KPNDVT-K subscale was used to assess the level of knowledge of DVT among nursing interns. RESULTS: The KPNDVT-K subscale was used to measure the DVT knowledge of nursing interns with good reliability and validity (difficulty p=0.304-0.426; differentiation D=0.422-0.540; Cronbach's alpha =0.724-0.950; R=0.766). The passing rate for the nursing interns' DVT knowledge was 75.1%, which was in the middle level. Sex (ß=-1.471, P=0.007), Home location (ß=-0.627, P=0.014), Understanding of channels (hospital teachers) (ß=0.688, P=0.008), Internship (ß=-1.625, P=0.035; ß=-1.435, P=0.038) were the main influences on nursing interns' knowledge of DVT. CONCLUSIONS: The KPNDVT-K subscale has high applicability in the measurement of DVT knowledge of nursing interns. The knowledge of DVT among nursing interns was satisfactory and the knowledge related to DVT preventive measures was good. Nursing educators should take active measures in both schools and hospitals to improve the DVT knowledge of nursing interns to reduce the occurrence of DVT in patients.


Assuntos
Internato e Residência , Trombose Venosa , Humanos , Estudos Transversais , Reprodutibilidade dos Testes , Hospitais , Trombose Venosa/prevenção & controle , Trombose Venosa/epidemiologia
14.
ACS Omega ; 9(6): 7269, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371812

RESUMO

[This corrects the article DOI: 10.1021/acsomega.3c04101.].

15.
J Biomed Mater Res B Appl Biomater ; 112(1): e35358, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247243

RESUMO

Allogenic demineralized bone matrix (DBM), processed to expose bioactive proteins imbedded by calcium salts, is widely used for bone repair and regeneration as an alternative to the autologous bone graft. However, demineralized bone matrices from tissue banks vary significantly in residual calcium content and osteogenicity for clinical bone regeneration. The present study produced DBM with various residual calcium contents by partial demineralization using ethylenediaminetetraacetic acid disodium (EDTA) and hydrochloric acid. Compositional analysis reveals that, as the percent weight loss of bone materials increases from 0% to 74.9% during demineralization, the residual calcium content of DBM decreases from 24.8% to 0.2% and collagen content increases from 29.7% to 92.6%. Calorimetrical analysis and Fourier transform infrared (FTIR) analysis demonstrated that demineralization to the residual calcium content of <4% enables the complete exposure and/or release of bone collagen fibers and other bioactive molecules. In order to evaluate the relationship between the extent of demineralization and the osteogenicity of DBM, DBM particles were fabricated with the aid of acellular dermal matrix (ADM) microfibers to form flexible foam-like DBM/ADM composites. Proteomic analysis identified various type collagens and bone formation-related bioactive molecules in both ADM and DBM. Using the rat bilateral Φ = 5 mm calvarium defect repair model, the study had shown that the DBM/ADM composite with ~20% DBM residual calcium (e.g., ~40% calcium being removed) maximized the osteogenicity for bone defect repair after 4 and 8 weeks. DBM with ~40% calcium removal had the maximal osteogenicity presumably through the sustained release of bioactive molecules during the process of bone regeneration.


Assuntos
Cálcio , Osteogênese , Animais , Ratos , Cálcio/farmacologia , Preparações de Ação Retardada/farmacologia , Proteômica , Colágeno/farmacologia
16.
ACS Omega ; 9(1): 252-263, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222523

RESUMO

Supercritical cyclohexane (SC-cyclohexane) shows significant advantages in mild operating conditions and the modulation of product distribution. To gain insights into the upgrading process of heavy oil in SC-cyclohexane, the dissolution process of polycyclic aromatic hydrocarbons (PAHs) contained in heavy oil was simulated based on molecular dynamics with the use of naphthalene, benzopyrene, and mixtures of naphthalene and benzopyrene as the model compounds. As indicated by the radial distribution function results, in SC-cyclohexane exhibiting low density, cyclohexane formed a solvent shell around PAHs such that the local concentration was reduced and the aggregation of PAHs was inhibited. The results of the solvation free energy suggested that van der Waals forces between PAHs and cyclohexane were mainly dominant. As revealed by the dissolution process of the model compounds in SC-cyclohexane, a low density and a suitable temperature contributed to the solubilization of PAHs. An appropriate temperature and a low density can be selected for the upgrading reaction to limit coke formation.

20.
World J Clin Cases ; 11(30): 7380-7385, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37969450

RESUMO

BACKGROUND: Intractable postherpetic neuralgia (PHN) can be difficult to manage even with aggressive multimodal therapies. Patients who experience uncontrolled refractory cranial PHN despite conservative treatment may benefit from an intrathecal drug delivery system (IDDS). For craniofacial neuropathic pain, the traditional approach has been to place the intrathecal catheter tip below the level of the cranial nerve root entry zones, which may lead to insufficient analgesia. CASE SUMMARY: We describe a 69-year-old man with a 1-year history of PHN after developing a vesicular rash in the ophthalmic division of cranial nerve V (trigeminal nerve) distribution. The pain was rated 7-8 at rest and 9-10 at breakthrough pain (BTP) on a numeric rating scale. Despite receiving aggressive multimodal therapies including large doses of oral analgesics (gabapentin 150 mg q12 h, oxycodone 5 mg/acetaminophen 325 mg q6 h, and lidocaine 5% patch 700 mg q12 h) and sphenopalatine ganglion block, there was no relief of pain. Subsequently, the patient elected to have an implantable IDDS with the catheter tip placed at the interpeduncular cistern. The frequency of BTP episodes decreased. The patient's continuous daily dose was adjusted to 0.032 mg/d after 3 mo of follow-up and stopped 5 mo later. He did not report pain or other discomfort at outpatient follow-up 6 mo and 1 year after stopping intracisternal hydromorphone. CONCLUSION: The use of interpeduncular cistern intrathecal infusion with low-dose hydromorphone by IDDS may be effective for severe craniofacial PHN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...